- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0011000003000000
- More
- Availability
-
50
- Author / Contributor
- Filter by Author / Creator
-
-
Tao, Yixin (5)
-
Cheung, Yun Kuen (2)
-
Cole, Richard (2)
-
Garg, Jugal (2)
-
Cole, Richard J. (1)
-
Végh, László A (1)
-
Végh, László A. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
null (3)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Garg, Jugal; Tao, Yixin; Végh, László A. (, Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA))
-
Cole, Richard; Tao, Yixin (, Journal of Economic Theory)null (Ed.)
-
Cheung, Yun Kuen; Cole, Richard J.; Tao, Yixin (, SIAM Journal on Optimization)null (Ed.)
-
Cheung, Yun Kuen; Cole, Richard; Tao, Yixin (, Mathematical Programming)null (Ed.)We seek tight bounds on the viable parallelism in asynchronous implementations of coordinate descent that achieves linear speedup. We focus on asynchronous coordinate descent (ACD) algorithms on convex functions which consist of the sum of a smooth convex part and a possibly non-smooth separable convex part. We quantify the shortfall in progress compared to the standard sequential stochastic gradient descent. This leads to a simple yet tight analysis of the standard stochastic ACD in a partially asynchronous environment, generalizing and improving the bounds in prior work. We also give a considerably more involved analysis for general asynchronous environments in which the only constraint is that each update can overlap with at most q others. The new lower bound on the maximum degree of parallelism attaining linear speedup is tight and improves the best prior bound almost quadratically.more » « less
An official website of the United States government
